NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

CÁC DẠNG TOÁN VỀ HÀM ẨN LIÊN QUAN ĐẾN
BÀI TOÁN XÉT SỰ TƯƠNG GIAO

NHÓM TOÁN VD – VDC

CỦA ĐỒ THỊ CÁC HÀM SỐ

Dạng 1: Biết đồ thị hoặc BBT của hàm số y = f ( x ) , xét các bài toán liên quan đến phương trình có
dạng f ( x ) = a . , f ( u ( x ) ) = a .

Dạng 2: Biết đồ thị hoặc BBT của hàm số y = f ( x ) , xét các bài toán liên quan đến phương trình có
dạng f ( x ) = g ( m ) , f ( u ( x ) ) = g ( m ) .

Dạng 3: Biết đồ thị hoặc BBT của hàm số y = f ( x ) , xét các bài toán liên quan đến phương trình có
dạng f ( x ) = f ( m ) , f ( u ( x ) ) = f ( m ) .
Dạng 4: Biết đồ thị hoặc BBT của hàm số y = f ( x ) , xét các bài toán liên quan đến phương trình có

(

)

dạng
=
f ( x )=
a ; f ( x ) a=
; f u ( x)
a=
; f ( u ( x ) ) a ... .
Dạng 5: Biết đồ thị hoặc BBT của hàm số y = f ( x ) , xét các bài toán liên quan đến phương trình có

(

)

dạng f ( x ) g=
=
( m ) ; f ( x ) g ( m=
) ; f u ( x ) g ( m=
) ; f ( u ( x ) ) g ( m ) ... .
Dạng 6: Biết đồ thị hoặc BBT của hàm số y = f ( x ) , xét các bài toán liên quan đến phương trình có

NHÓM TOÁN VD – VDC

dạng f ( x ) g=
=
( x ) ; f (u ( x )) g ( v ( x )) .

Dạng 7: Biết đồ thị hoặc BBT của hàm số y = f ( x ) , xét các bài toán liên quan đến phương trình,
bất phương trình chứa f ' ( x ) ; f '' ( x ) ... .

Dạng 8: Biết đồ thị hoặc BBT của hàm số y = f ' ( x ) , xét các bài toán liên quan đến phương trình
có dạng=
f ( x ) 0; f =
f ( x) g ( x); f =
( u ( x ) ) 0;=
( u ( x ) ) g ( v ( x ) ) ... .

Dạng 9: Biết đồ thị hoặc BBT của hàm số y = f ' ( x ) , xét các bài toán liên quan đến phương trình
có dạng=
f ( x ) m ; f=
; f ( x ) g ( m) ; f=
( u ( x ) ) m=
( u ( x ) ) g ( m ) ...
Dạng 10: Biết số nghiệm của phương trình f ( x ) = 0 , xét các bài toán liên quan đến phương trình
có chứa f ' ( x ) ; f '' ( x ) ... .
Dạng 11: Biết đồ thị hoặc BBT của hàm số y = f ( x ) , xét các bài toán liên quan đến BẤT
PHƯƠNG TRÌNH có dạng f ( x ) ≥ g ( x ) ; f ( u ( x ) ) ≥ g ( x ) ( > , < , ≤ ) ... có thể có tham số.
Dạng 12: Biết đồ thị hoặc BBT của hàm số y = f ' ( x ) , xét các bài toán liên quan đến BẤT
PHƯƠNG TRÌNH có dạng f ( x ) ≥ g ( x ) ; f ( u ( x ) ) ≥ g ( x ) ( > , < , ≤ ) ... có thể có tham số.
https://www.facebook.com/groups/toanvd.vdc

Trang 1

NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

CÁC DẠNG TOÁN VỀ HÀM ẨN LIÊN QUAN ĐẾN BÀI TOÁN
XÉT SỰ TƯƠNG GIAO CỦA ĐỒ THỊ CÁC HÀM SỐ (PHẦN 1. Từ dạng 1 đến dạng 4)
phương trình có dạng f ( x ) = a . , f ( u ( x ) ) = a .
Câu 1.

Cho hàm số y = f ( x ) có đồ thị như hình vẽ.

NHÓM TOÁN VD – VDC

Dạng 1: Biết đồ thị hoặc BBT của hàm số y = f ( x ) , xét các bài toán liên quan đến

Số nghiệm thuộc khoảng ( 0; π ) của phương trình f ( sin x ) = −4 là
B. 1 .

A. 0 .

C. 2 .
Lời giải

D. 4 .

NHÓM TOÁN VD – VDC

Chọn C

sin x = α ∈ ( −1;0 )
Xét phương trình: f ( sin x ) = −4 ⇔ 
sin x= β ∈ ( 0;1)

β ( 0;1) . Vậy
Vì x ∈ ( 0; π ) ⇒ sin x ∈ ( 0;1] . Suy ra với x ∈ ( 0; π ) thì f ( sin x ) = −4 ⇔ sin x =∈
phương trình đã cho có 2 nghiệm x ∈ ( 0; π ) (thỏa mãn).
Vậy chọn
Câu 2.

C.

Cho hàm số y = f ( x ) liên tục trên  và có bảng biến thiên như sau:

https://www.facebook.com/groups/toanvd.vdc

Trang 2

NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

13
có bao nhiêu nghiệm thuộc khoảng
3

A. 0 .

B. 1 .

C. 2 .
Lời giải

NHÓM TOÁN VD – VDC

Phương trình f ( cos x ) =

 π π
− ; ?
 2 2
D. 4 .

Chọn C
 π π
Đặt t = cos x , x ∈  − ;  ⇒ t ∈ ( 0;1] .
 2 2
13
13
Phương trình f ( cos x ) =
trở thành f ( t ) =
3
3

13
có đúng một nghiệm t ∈ ( 0;1)
3
Với một nghiệm t ∈ ( 0;1) , thay vào phép đặt ta được phương trình cosx = t có hai nghiệm

Dựa vào bảng biến thiên trên ta có phương trình f ( t ) =

 π π
phân biệt thuộc thuộc khoảng  − ;  .
 2 2

Vậy phương trình f ( cos x ) =

 π π
− ; .
 2 2

NHÓM TOÁN VD – VDC

Câu 3.

13
có hai nghiệm phân biệt thuộc thuộc khoảng
3

Cho hàm số y = f ( x ) xác định trên  \ {0} có bảng biến thiên như sau

Số nghiệm của phương trình 2 f ( 3 x − 5 ) − 7 =
0 là
A. 1 .

B. 2 .

C. 3 .
Lời giải

D. 4 .

Chọn C
2 f ( 3x − 5) − 7 = 0 ⇔ f ( 3x − 5) =

7
.
2

t 3 x − 5 , phương trình trở thành f ( t ) =
Đặt =

7
.
2

7
t +5
nên số nghiệm t của phương trình f ( t ) =
2
3
bằng số nghiệm của phương trình 2 f ( 3 x − 5 ) − 7 =
0.

Với mỗi nghiệm t thì có một nghiệm x =

https://www.facebook.com/groups/toanvd.vdc

Trang 3

NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

Dựa vào bảng biến thiên của hàm số y = f ( x ) suy ra phương trình f ( t ) =
phân biệt nên phương trình 2 f ( 3 x − 5 ) − 7 =
0 có 3 nghiệm phân biệt.

NHÓM TOÁN VD – VDC

Câu 4.

7
có 3 nghiệm
2

Cho hàm số y = f ( x ) liên tục trên  thỏa mãn điều kiện lim f ( x ) = lim f ( x ) = −∞ và có
x →−∞

x →+∞

đồ thị như hình dưới đây

)

(

Với giả thiết, phương trình f 1 − x 3 + x =
a có nghiệm. Giả sử khi tham số a thay đổi, phương trình đã
cho có nhiều nhất m nghiệm và có ít nhất n nghiệm. Giá trị của m + n bằng
A. 4 .

B. 6 .

C. 3 .
Lời giải

D. 5 .

NHÓM TOÁN VD – VDC

Chọn C
Dễ thấy điều kiện của phương trình đã cho là x ≥ 0 .
Đặt t = 1 − x3 + x

(1) ⇒ t ∈ (−∞;1] .

Dễ thấy phương trình (1) luôn có nghiệm duy nhất ∀t ∈ (−∞;1] .

=
f ( t ) a (2), t ≤ 1 .
Phương trình đã cho có dạng:
Số nghiệm của phương trình đã cho bằng số nghiệm của (2).
Đồ thị hàm=
số y f ( t ) , t ≤ 1 có dạng:

https://www.facebook.com/groups/toanvd.vdc

Trang 4

NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

NHÓM TOÁN VD – VDC

Do đó:
(2) vô nghiệm khi a > 1 .
(2) có hai nghiệm khi −3 ≤ a < 1 .
(2) có nghiệm duy nhất khi a = 1 hoặc a < −3 .
Vậy m = 2, n =1 ⇒ m + n =3 .
Câu 5.

Cho hàm số y = f ( x ) liên tục trên  và có đồ thị như hình vẽ. Gọi m là số nghiệm của

(

)

phương trình f f ( x ) = 1 . Khẳng định nào sau đây là đúng?

B. m = 7 .

C. m = 5 .
Lời giải

D. m = 9 .

Chọn B

https://www.facebook.com/groups/toanvd.vdc

Trang 5

NHÓM TOÁN VD – VDC

A. m = 6 .

NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

 f ( x ) = x1 (1)

x2 ( 2 ) .
1 ⇔  f ( x) =
Suy ra: f ( f ( x ) ) =
f x =x 3
 ( ) 3( )
+) Xét (1): f ( x ) = x1 ∈ ( −1;0 ) , ta có đường thẳng y = x1 cắt đồ thị hàm số y = f ( x ) tại 3
điểm phân biệt nên phương trình (1) có 3 nghiệm phân biệt.

NHÓM TOÁN VD – VDC

 x = x1 ∈ ( −1;0 )

1  x =x2 ∈ ( 0;1) .
Ta có: f ( x ) =⇔
=
 x x3 > 2

+) Xét ( 2 ) : f ( x=
) x2 ∈ ( 0;1) , ta có đường thẳng y = x2 cắt đồ thị hàm số y = f ( x ) tại 3
điểm phân biệt nên phương trình ( 2 ) có 3 nghiệm phân biệt.
+) Xét ( 3) : f ( x=
) x3 > 2 , ta có đường thẳng y = x3 cắt đồ thị hàm số y = f ( x ) tại 1 điểm
nên phương trình ( 3) có 1 nghiệm.
Do các nghiệm không trùng nhau nên tổng số nghiệm là: m = 3 + 3 + 1 = 7 .
Câu 6.

Cho hàm số y = f ( x ) có đồ thị như hình vẽ sau.

NHÓM TOÁN VD – VDC

Số nghiệm của phương trình f ( 2sin x ) = 1 trên đoạn [ 0; 2π ] là
A. 1 .

B. 2 .

C. 3 .
Lời giải

D. 4 .

Chọn C
Đặt t = 2sin x , t ∈ [ −2; 2] .
Xét phương trình f ( t ) = 1 , dựa vào đồ thị ta thấy

https://www.facebook.com/groups/toanvd.vdc

Trang 6

NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

(l )
( n )  2 sin x = −2 sin x =


( n )  2sin x = −1 sin x =

(l )


Với sin x = −1 ⇔ x =

−1
1.

2

NHÓM TOÁN VD – VDC

t = −3

t = −2
1⇔ 
f (t ) =
t = −1
t = 5



π
+ k 2π , x ∈ [ 0; 2π ] ⇒ x = .
2
2

π

− + k 2π
x =
5π 4π
1
3
, x ∈ [ 0; 2π ] ⇒ x = ,
.
Với sin x =
− ⇔

3
3
2
=
+ k 2π
x

3
Vậy phương trình có 3 nghiệm
Câu 7.

Cho hàm số y = f ( x ) liên tục trên  và có đồ thị như hình vẽ.

A. 6.

B. 7.

C. 8.
Lời giải.

NHÓM TOÁN VD – VDC

Phương trình f ( f ( x ) ) = 0 có bao nhiêu nghiệm.
D. 9.

Chọn D

y=c
y=b
y=a

=
x a ( a ∈ ( −2; −1) )

Phương trình f ( x ) = 0 có ba nghiệm phân biệt là: =
 x b ( b ∈ ( 0;1) )

=
 x c ( c ∈(1;2 ) )

f ( x ) a=
, f ( x ) b=
, f ( x ) c đều có 3 nghiệm phân biệt.
Các phương trình=
https://www.facebook.com/groups/toanvd.vdc

Trang 7

NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

Vậy phương trình đã cho có 9 nghiệm phân biệt.
Câu 8.

Cho hàm số y = f ( x ) có đồ thị như hình vẽ.

NHÓM TOÁN VD – VDC

y
3

-1

x

1
-1

0 là
Số nghiệm của phương trình 3 f ( x) − 4 =
A. 1 .

B. 3 .

C. 0 .
Lời giải

D. 2 .

Chọn B
Ta có 3 f ( x ) − 4 = 0 ⇔ f ( x ) =

4
3

(1) .

Phương trình (1) là phương trình hoành độ giao điểm của đồ thị hàm số y = f ( x ) và đường
thẳng y =

4
. Số nghiệm của (1) chính là số giao điểm của hai đồ thị hàm số.
3
y

NHÓM TOÁN VD – VDC

3
y=

4
3

-1
1

x

-1

4
ta thấy hai đồ thị cắt nhau tại 3 điểm phân biệt
3
nên phương trình (1) có 3 nghiệm phân biệt. Vậy phương trình ban đầu có 3 nghiệm phân

Dựa vào đồ thị của hai hàm
số y f=
=
( x), y

biệt.
Câu 9.

Cho hàm số y = f ( x ) có bảng biến thiên như sau

0 là
Số nghiệm thực của phương trình 2 f ( x ) − 3 =
https://www.facebook.com/groups/toanvd.vdc

Trang 8

NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

A. 2 .

B. 4 .

C. 3 .
Lời giải

D. 1 .

NHÓM TOÁN VD – VDC

3
0 ⇔ f ( x) =
Phương trình 2 f ( x ) − 3 =
.
2

Số nghiệm của phương trình đã cho bằng số giao điểm của đồ thị hàm số y = f ( x ) với đường
thẳng y =

3
.
2

0 là 2 .
Từ bảng biến thiên suy ra số nghiệm thực của phương trình 2 f ( x ) − 3 =

Câu 10. Cho hàm số f ( x ) liên tục trên  có đồ thị y = f ( x ) như hình vẽ bên. Phương trình

f ( 2 − f ( x )) =
0 có tất cả bao nhiêu nghiệm phân biệt.

A. 4.

B. 5.

D. 7.

Lời giải

NHÓM TOÁN VD – VDC

Chọn B

C. 6.

Theo đồ thị:

 x = a ( −2 < a < −1)
2 − f ( x ) = a
 f ( x ) = 2 − a (1)



⇒ f ( 2 − f ( x )) = 0 ⇔ 2 − f ( x ) = b ⇔  f ( x ) = 2 − b ( 2)
f ( x ) = 0 ⇔  x = b ( 0 < b < 1)



 x = c (1 < c < 2 )
2 − f ( x ) = c
 f ( x ) = 2 − c ( 3)

Nghiệm của phương trình (1); (2); (3) là giao điểm của đường thẳng y= 2 − a ; y= 2 − b ;

y= 2 − c với đồ thị hàm số f ( x ) .
 a ∈ ( −2;1) ⇒ 2 − a ∈ ( 3; 4 ) suy ra phương trình (1) có đúng 1 nghiệm.
 b ∈ ( 0;1) ⇒ 2 − b ∈ (1; 2 ) suy ra phương trình (2) có đúng 1 nghiệm.
 c ∈ (1;2 ) ⇒ 2 − c ∈ ( 0;1) suy ra phương trình (3) có 3 nghiệm phân biệt.
Kết luận: Có tất cả 5 nghiệm phân biệt.
Câu 11. Cho hàm số y = f ( x ) có bảng biến thiên như sau

https://www.facebook.com/groups/toanvd.vdc

Trang 9

NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

Có bao nhiêu số nguyên m để phương trình 2 f ( x ) + m =
0 có 4 nghiệm phân biệt?
A. 4 .

B. 5 .

C. 2 .

D. 6 .

Chọn B
Ta có: 2 f ( x ) + m = 0 ⇔ f ( x ) =

−m
2

( *) .

Phương trình (*) có 4 nghiệm phân biệt ⇔ đường thẳng ( d ) : y =
y = f ( x ) tại 4 điểm phân biệt ⇔ −2 <

−m
cắt đồ thị hàm số
2

−m
< 1 ⇔ −2 < m < 4 .
2

Do m ∈  nên m ∈ { − 1; 0; 1; 2; 3} . Chọn

NHÓM TOÁN VD – VDC

Lời giải

B.

Câu 12. Cho hàm số y = f ( x ) có đồ thị như hình vẽ dưới đây.

Hỏi có bao nhiêu điểm trên đường tròn lượng giác biểu diễn nghiệm của phương trình
B. 3 điểm.

C. 4 điểm.
Lời giải

D. Vô số.

ChọnC
Dựa vào đồ thị ta thấy khi x ∈ [ −1;1] thì y ∈ [ 0;1] .
Do đó nếu đặt t = cos 2 x thì t ∈ [ −1;1] , khi đó f ( cos 2 x ) ∈ [ 0;1] .

 f ( cos 2 x ) = 0

Dựa vào đồ thị, ta có f  f ( cos 2 x )  = 0 ⇔  f ( cos 2 x ) = a ( a < −1) ( loaïi ) .
 f cos 2=
x ) b ( b > 1) ( loaïi )
 (
cos 2 x = 0

Phương trình f ( cos 2 x ) = 0 ⇔ cos 2 x = a ( a < −1) ( loaïi )
cos=
2 x b ( b > 1) ( loaïi )


⇔ cos 2 x = 0 ⇔ x =

π
4

+k

π
2

( k ∈ ).

Vậy phương trình đã cho có 4 điểm biểu diễn nghiệm trên đường tròn lượng giác.

https://www.facebook.com/groups/toanvd.vdc

Trang 10

NHÓM TOÁN VD – VDC

f  f ( cos 2 x )  = 0 ?
A. 1 điểm.

NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

Câu 13. Cho hàm số bậc ba y = f ( x ) có đồ thị hàm số như hình vẽ dưới đây

B. 3 .

A. 1

(

NHÓM TOÁN VD – VDC

Tìm số nghiệm thực của phương trình f

)

− x2 + 4x − 3 =
−2.

D. 5 .

C. 4 .
Lời giải

ChọnA

− x 2 + 4 x − 3 xác định khi 1 ≤ x ≤ 3.

Ta có
Từ

f

(

đồ

thị

của

hàm

số,

ta

 − x 2 + 4 x − 3 = a < 0 ( loaïi )


1
.
− x2 + 4x − 3 =
−2 ⇔  − x 2 + 4 x − 3 =

2
 − x + 4 x − 3 = b ∈ ( 2;3)



)

NHÓM TOÁN VD – VDC



− x 2 + 4 x − 3 =1 ⇔ x = 2.



∆′ = 4 − (3 + b

2

) = 1− b

− x2 + 4 x − 3 = b ⇔ x2 − 4 x + 3 + b2 = 0
2



< 0, ∀b ∈ ( 2;3) .

Vậy phương trình f

(

)

− x2 + 4x − 3 =
−2 có đúng 1 nghiệm.

Câu 14. Cho hàm số y = f ( x ) liên tục trên  và có đồ thị như hình vẽ dưới đây. Tập hợp tất cả các
giá trị thực của tham số m để phương trình 2 f ( 2 sin x + 1) =
m có nghiệm thuộc khoảng

( 0;π )


y 4

−3 −1 O

A. [ 0;4 ) .

B. ( 0;4 ) .

1

3

C. (1;3) .

x
D. [ 0;8) .

Lời giải
https://www.facebook.com/groups/toanvd.vdc

Trang 11

NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

Chọn D
Đặt t 2 sin x + 1 . Với x ∈ ( 0;π ) thì t ∈ (1;3] .
=

phương trình f ( t ) =

m
có nghiệm thuộc nửa khoảng (1;3] .
2
m
∈ [ 0;4 ) ⇔ m ∈ [0;8) .
2

Quan sát đồ thị ta suy ra điều kiện của tham số m là

NHÓM TOÁN VD – VDC

Do đó phương trình 2 f ( 2 sin x + 1) =
m có nghiệm thuộc khoảng ( 0; π ) khi và chỉ khi

Câu 15. Cho hàm số y = f ( x ) liên tục trên  và có đồ thị như hình vẽ dưới đây. Tập hợp tất cả các
giá trị thực của tham số m để phương trình f

(

)

2 − x2 =
m có nghiệm là:

y
2

x

−2 - 2 O

C. ( −2;2 ) .

B. ( 0;2 ) .

A.  − 2 ; 2  .

2 2
D. [ 0;2] .

Lời giải
Điều kiện của phương trình: x ∈  − 2 ; 2  .
Đặt=
t

2 − x 2 . Với x ∈  − 2 ; 2  thì t ∈ 0; 2  .

Do đó phương trình f

(

)

2 − x2 =
m có nghiệm khi và chỉ khi phương trình f ( t ) = m có

nghiệm thuộc đoạn 0; 2  .
Quan sát đồ thị ta suy ra điều kiện của tham số m là m ∈ [ 0;2] .
Câu 16. Cho hàm số f ( x ) có bảng biến thiên như sau:

0 là
Số nghiệm thực của phương trình 3 f ( x ) − 5 =
A. 4.

B. 2 .

https://www.facebook.com/groups/toanvd.vdc

C. 0 .

D. 3 .
Trang 12

NHÓM TOÁN VD – VDC

Chọn D

NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

Lời giải
Chọn A

NHÓM TOÁN VD – VDC

5
5 ⇔ f ( x) =
0 ⇔ 3 f ( x) =
Ta có 3 f ( x ) − 5 =
.
3

5
Số nghiệm của phương trình là số giao điểm của hai đồ thị y = f ( x ) và đường thẳng y = .
3
5
Dựa vào BBT ta thấy đường thẳng y = cắt đồ thị y = f ( x ) tại 4 điểm phân biệt.
3

Vậy phương trình có 4 nghiệm thực phân biệt.
Câu 17. Cho hàm số y = f ( x ) có đồ thị như hình vẽ sau.

0 là:
Số nghiệm của phương trình [f ( x 2 + 1)]2 − f ( x 2 + 1) − 2 =
A. 1.

B. 4.

D. 5 .

NHÓM TOÁN VD – VDC

C. 3 .
Lời giải

Chọn B
Đặt t = x 2 + 1 ⇒ t ≥ 1 .

Ta thấy ứng với t = 1 cho ta một giá trị của x và ứng với mỗi giá trị t > 1 cho ta hai giá trị của
x.
 f ( t ) = −1
2
Phương trình đã cho trở thành:  f ( t )  − f ( t ) − 2 = 0 ⇔ 
.
 f ( t ) = 2

Từ đồ thị hàm số y = f ( t ) trên [1; +∞ ) suy ra phương trình f ( t ) = −1 có 1 nghiệm t = 2 và
phương trình f ( t ) = 2 có 1 nghiệm t > 2 do đó phương trình đã cho có 4 nghiệm.
Vậy phương trình đã cho có 4 nghiệm.
Câu 18. Cho hàm số y = f ( x ) liên tục trên  và có đồ thị như hình vẽ dưới đây. Có bao nhiêu giá trị
nguyên của tham số m [ −10; 10] để phương trình f ( x3 − 3 x 2 + 2 ) = m 2 − 3m có nghiệm thuộc
nửa khoảng [1;3) .

https://www.facebook.com/groups/toanvd.vdc

Trang 13

NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

B. 5 .

Chọn D
Đặt t =x3 − 3 x 2 + 2 .
Vì 1 ≤ x < 3 ⇒ −2 ≤ t < 2 .

C. 6 .
Lời giải

D. 4 .

NHÓM TOÁN VD – VDC

A. 21 .

Phương trình f ( x3 − 3 x 2 + 2 ) = m 2 − 3m ⇔ f ( t ) = m 2 − 3m với t ∈ [ −2; 2 ) .
2
m − 3m + 2 ≥ 0
Phương trình có nghiệm thuộc nửa khoảng [1;3) ⇔ −2 ≤ m − 3m < 4 ⇔  2
.
m − 3m − 4 < 0
2

 −1 < m ≤ 1
⇔
2 ≤ m < 4
Vậy trên đoạn [ −10; 10] có 4 giá trị nguyên thỏa yêu cầu bài toán.
Câu 19. Cho hàm số y = f ( x ) liên tục trên  và có đồ thị như hình vẽ.

A. 1 .

B. 2 .

C. 3 .

D. 4 .

NHÓM TOÁN VD – VDC

Số nghiệm thực phân biệt của phương trình f ( x ) = 2 là:

Lời giải
Chọn C
Số nghiệm của phương trình f ( x ) = 2 là số giao điểm của đồ thị hàm số y = f ( x ) và đường
thẳng y = 2 . Dựa vào đồ thị ta thấy số giao điểm là 3.
Vậy phương trình đã cho có 3 nghiệm phân biệt.
Câu 20. Cho hàm số y = f ( x ) liên tục trên  có đồ thị như hình vẽ. Phương trình f ( f ( x ) ) = −3 có
tất cả bao nhiêu nghiệm thực phân biệt?

https://www.facebook.com/groups/toanvd.vdc

Trang 14

NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

B. 1.

C. 2.

NHÓM TOÁN VD – VDC

A. 0.

D. 3

Lời giải
Chọn C
Từ đồ thị ta có f ( f ( x ) ) =−3 ⇔ f ( x ) =−1 .

Cũng từ đồ thị ta thấy ta có đồ thị hàm số y = f ( x ) cắt đường thẳng y = −1 tại hai điểm phân
biệt nên phương trình f ( x ) = −1 có hai nghiệm phân biệt.
Vậy phương trình đã cho có hai nghiệm phân biệt.
Câu 21. Cho hàm số bậc ba y = f ( x ) có đồ thị như hình vẽ.
y
2

2
O

1

x

NHÓM TOÁN VD – VDC

-2

-1

-2
y = f(x)

Phương trình f ( f ( x ) ) = 2 có bao nhiêu nghiệm?
A. 3

B. 4.

C. 5.
Lời giải

D. 6.

Chọn C
Dựa vào đồ thị của hàm số ta có:
 f ( x ) = −2
.
f ( f ( x ) )= 2 ⇔ 
 f ( x ) = 1
Số nghiệm của các phương trình f ( x ) = −2 và f ( x ) = 1 lần lượt là số giao điểm đồ thị hàm số

y = f ( x ) và các đường thẳng y =
−2, y =
1.

https://www.facebook.com/groups/toanvd.vdc

Trang 15

NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

Dựa vào đồ thị ta có f ( x ) = −2 có hai nghiệm phân biệt x1 =
−1; x2 =
2 và f ( x ) = 1 có ba
nghiêm=
x3 a=
; x4 b=
; x5 c sao cho -2 < a < -1 < b < 1 < c < 2 .

NHÓM TOÁN VD – VDC

Vậy phương trình f ( f ( x ) ) = 2 có 5 nghiệm phân biệt.

Câu 22. Cho hàm số y = f ( x ) liên tục trên  và có đồ thị như hình vẽ dưới đây. Tập hợp tất cả các giá

trị thực của tham số m để phương trình f ( x 2 + 2 x − 2 ) = 3m + 1 có nghiệm thuộc khoảng

[0;1]. .

A. [ 0; 4] .

B. [ −1;0] .

C. [ 0;1] .

 1 
D.  − ;1
 3 

Lời giải
Chọn.D.
Đặt t = x 2 + 2 x − 2 . Với x ∈ [ 0;1] ⇒ t ∈ [ −2;1] .

NHÓM TOÁN VD – VDC

Phương trình f ( x 2 + 2 x − 2 ) = 3m + 1 có nghiệm thuộc đoạn [ 0;1] khi và chỉ khi phương trình
1
f (=
t ) 3m + 1 có nghiệm thuộc [ −2;1] ⇔ 0 ≤ 3m + 1 ≤ 4 ⇔ − ≤ m ≤ 1 .
3

Câu 23. Cho hàm số y = f ( x ) có bảng biến thiên như sau

0 là
Số nghiệm phương trình f ( x ) − 2020 =
A. 2 .

B. 0 .

C. 1 .
Lời giải

D. 3

Chọn C
Ta có f ( x ) − 2020 =
0 ⇔ f ( x) =
2020 .

https://www.facebook.com/groups/toanvd.vdc

Trang 16

NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

Từ bảng biến thiên ta có đồ thị hàm số y = f ( x ) cắt đường thẳng y = 2020 tại 1 điểm nên
phương trình đã cho có 1 nghiệm.

NHÓM TOÁN VD – VDC

Câu 24. Cho hàm số y = f ( x ) có đồ thị như hình bên dưới
y
2

- 2

1

0

2

x

-2

0 là:
Số nghiệm của phương trình 2 f ( x ) − 7 =
A. 4 .

B. 2 .

Lời giải

C. 0 .

D. 3 .

Chọn B
7
2 f ( x) − 7 =
0 ⇔ f ( x) =
.
2

0 có 2 nghiệm phân biệt.
Vậy phương trình 2 f ( x ) − 7 =

7
cắt nhau tại hai điểm phân biệt.
2

NHÓM TOÁN VD – VDC

Dựa vào đồ thị ta thấy đồ thị hàm số y = f ( x ) và đường thẳng y =

Câu 25. Cho hàm số y = f ( x ) có bảng biến thiên như sau

Số nghiệm của phương trình f ( x ) + 1 =0 là?
A. 1 .

B. 3 .

C. 0 .
Lời giải

D. 2 .

−1 .
Phương trình f ( x ) + 1 =0 ⇔ f ( x ) =
Dựa vào bảng biến thiên ta thấy phương trình vô nghiệm
Chọn C
https://www.facebook.com/groups/toanvd.vdc

Trang 17

NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

Câu 26. Cho hàm số y = f ( x ) có bảng biến thiên như hình vẽ

B. 3 .

A. 1 .

C. 0 .
Lời giải

D. 2 .

NHÓM TOÁN VD – VDC

6 có bao nhiêu nghiệm âm?
Phương trình f (1 − 3 x ) =

2

x=

−1
1 − 3 x =
3
−3 f (1 − 3 x ) =
0 ⇔
x ) f (1 − 3 x ) ⇒ g ′ ( x ) =
.
Xét g (=
⇔
3
1 − 3 x =
x = − 2

3
Bảng biến thiên

Chọn

A.

Câu 27. Đồ thị hàm số f ( x ) = ax 4 + bx 3 + cx 2 + dx + e có dạng như hình vẽ sau.

https://www.facebook.com/groups/toanvd.vdc

Trang 18

NHÓM TOÁN VD – VDC

6 có một nghiệm âm.
Dựa vào bảng biến thiên ta thấy phương trình f (1 − 3 x ) =

NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

NHÓM TOÁN VD – VDC

Phương trình a ( f ( x) ) + b ( f ( x) ) + c ( f ( x) ) + df ( x) + e =
0 (*) có số nghiệm là
4

A. 2.
Chọn

3

B. 6.
C.

2

C. 12.
Hướng dẫn giải

D. 16.

NHÓM TOÁN VD – VDC
Ta thấy đồ thị y = f ( x ) cắt trục hoành tại 4 điểm phân biệt nên phương trình f ( x ) = 0 có 4
nghiệm phân biệt: x1 ∈ ( −1,5; −1) , x2 ∈ ( −1; −0,5 ) , x3 ∈ ( 0;0,5) , x4 ∈ (1,5; 2 ) .
Kẻ đường thẳng y = m .

https://www.facebook.com/groups/toanvd.vdc

Trang 19

NHÓM TOÁN VD–VDC Hàm ẩn liên quan đến bài toán tương giao

Với m = x1 ∈ ( −1,5; −1) có 2 giao điểm nên phương trình f ( x ) = x1 có 2 nghiệm.
Với m = x2 ∈ ( −1; −0,5 ) có 4 giao điểm nên phương trình f ( x ) = x2 có 4 nghiệm.

Với m= x4 ∈ (1,5; 2 ) có 2 giao điểm nên phương trình f ( x ) = x4 có 2 nghiệm.
Vậy phương trình (*) có 12 nghiệm.
Câu 28. Cho hàm số y = f ( x ) liên tục trên  và có đồ thị như hình bên.

NHÓM TOÁN VD – VDC

Với m= x3 ∈ ( 0;0,5) có 4 giao điểm nên phương trình f ( x ) = x3 có 4 nghiệm.

Số nghiệm phân biệt của phương trình f ( f ( x ) ) = 1 là
A. 7 .

C. 9 .
Lời giải

D. 6 .

A.

=
t a

Đặt f ( x ) = t , khi đó f ( t ) =1 ⇔ t =0
t b
=

=
 f ( x) a

Khi đó ta có  f ( x ) = 0
=
 f ( x) b

NHÓM TOÁN VD – VDC

Chọn

B. 8 .

( −2 < a < −1)
.

(1 < b < 2 )

( −2 < a < −1)
.

(1 < b < 2 )

Dựa vào đồ thị ta có phương trình f ( x ) = a có 1 nghiệm, phương trình f ( x ) = 0 có 3
nghiệm, phương trình f ( x ) = b có 3 nghiệm. Và các nghiệm này không trùng nhau.
Vậy phương trình f ( f ( x ) ) = 1 có 7 nghiệm.
Câu 29. Cho hàm số f ( x ) liên tục trên  có đồ thị y = f ( x ) như hình vẽ bên. Số nghiệm thực của

(

)

phương trình f 2 + f ( e x ) =
1 là

https://www.facebook.com/groups/toanvd.vdc

Trang 20


Xemtailieu.com không chịu trách nhiệm liên quan đến các vấn đề bản quyền tài liệu được thành viên tự nguyện đăng tải lên.